If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=-3F^2-18F-15
We move all terms to the left:
(F)-(-3F^2-18F-15)=0
We get rid of parentheses
3F^2+18F+F+15=0
We add all the numbers together, and all the variables
3F^2+19F+15=0
a = 3; b = 19; c = +15;
Δ = b2-4ac
Δ = 192-4·3·15
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{181}}{2*3}=\frac{-19-\sqrt{181}}{6} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{181}}{2*3}=\frac{-19+\sqrt{181}}{6} $
| -6(-3s-9)-20s=6 | | X^2-24x+144=81 | | 4-10h=-8h | | -x/3+6=10 | | -2-8k-k=1-8k | | 2x+3(3x-1)=17 | | 0.3(9k+12)=15 | | (v)-14=-5 | | c=3.14/172.7 | | h–5/1=53 | | 2+2n+3n=-23 | | 9x+12=4x–18 | | h–51=53 | | 6=-12-9/11y | | 4y+7y=19 | | 5•(2y/3+1/3)-4y=1 | | 7x+4x+5+4x+10+5x-5+6x+10=540 | | 5x–5=-10 | | 360=(8x+13)+11x-23)+180 | | x+161+128+(x+11)+123+65+102=18 | | x/5=151 | | x+161+128+(x+11)+123+65+102=360 | | x+161+128+(x+11)+123+65+102=180(7 | | (9x+1)+(5x+12)+(10x-37)=180 | | 3/4(8x+4)=6x+4 | | (6x-9)+(3x+2)=180 | | 2(p+4)=–18 | | (6x-9)+(2x-14)=(3x+2 | | x+37=123 | | 0.365x+15=x | | 7–4y=31 | | -5x-15=95 |